Настаивая на эмпирическом обосновании понятия вероятности и отбрасывая классическую теорию из-за отсутствия такого обоснования, частотный подход Мизеса оказался неспособным удержать то положительное, что нес в себе классический подход. Оно состояло в следующем. Неявным образом при определении вероятности принимались во внимание определенные свойства индивидуального объекта, характеризующие набор объективных возможностей его поведения в испытании (например, однородность строения, симметрия и т.п.). Благодаря этому в известном смысле обоснованным становилось приложение классической теории к реальным сериям испытаний.
Следует заметить, что эта сторона классического подхода обычно остается в тени. Более того, вместе с принципом недостаточного основания, символизирующим субъективизм и априоризм данной концепции, отбрасывают самую идею «равновозможности» как исходный пункт истолкования вероятности. Между тем, эту концепцию, если придавать «равновозможности» объективный смысл, нельзя рассматривать как полностью преодоленный этап. Скорее правы те авторы, которые считают, что теоретическое истолкование вероятности на базе данного понятия не исчерпало себя полностью. Так, А.Я.Хинчин, разбирая в одной из своих статей пример Мизеса с неправильной костью, показывал, что противопоставление данного случая идее равновозможности не оправдано, если исходить из некоторых топологических представлений[16].
Поставленный выше вопрос о возможности эмпирических предсказаний на основе теории Мизеса непосредственно связан с так называемой проблемой тестификации вероятностных суждений (проблемой их эмпирических испытаний). Сложность ее решения в рамках данной концепции вытекает из нечеткости ее базовых понятий.
В самом деле, если рассматривать классы, связываемые посредством отношений частот, как бесконечные, тогда ни одно конечное число экспериментов не в состоянии ни полностью подтвердить, ни полностью опровергнуть вероятностное суждение, ибо частотный подход не имеет каких-либо разумных средств ограничения требования иррегулярности. Теоретически здесь нельзя исключать факта, что любая конечная серия проведенных экспериментов может оказаться лишь флюктуацией с каким угодно большим отклонением относительной частоты в данной серии от относительной частоты во всем бесконечном классе. Между тем, на практике прогнозы по конечным наблюдаемым сериям являются обычным делом.
Вероятностные суждения, согласно Рейхенбаху, не могут быть сообщениями, как обычные предложения в рамках строгой логики (т.е. стоять в однозначном соответствии с наблюдаемыми фактами). Наоборот, они могут лишь соответствовать некоторой последовательности фактов, в зависимости от того, делают эти факты данное высказывание более или менее вероятным[18]. Одновременно, по его мнению, можно говорить и о том, что факт тоже устанавливает в свою очередь последовательность вероятностных высказываний в зависимости от большего или меньшего их соответствия факту. Именно поэтому, писал Рейхенбах, можно говорить о вероятности события так же, как о вероятности высказывания. Тут дело, дескать, только в терминологии.
Вследствие этого, обычные способы тестификации, опирающиеся на двузначную логику (истинно-ложно) здесь неприемлемы. Но вероятностное высказывание может получить рациональный смысл, если его рассматривать как неопределенное предсказание, которое относится к частоте появления события в будущем. Оправдание вероятностного суждения возможно лишь индуктивным путем[19].
В том, что здесь отсутствует действительное решение проблемы, убеждает рассмотрение одного из важных следствий позиции Рейхенбаха по данному вопросу, на которое обратил внимание еще Б.Рассел и назвал «бесконечным регрессом» [20]. Бесконечным оказывается процесс оценки вероятности отдельного высказывания (а в этом Рейхенбах видел одну из главных задач своей вероятностной логики). Это связано с тем, что решение проблемы смысла вероятностных суждений покоится у Рейхенбаха на положении об исключительно вероятностном характере всего знания, ибо истинность у него отождествляется с вероятностью, а ее крайние границы - значения 0 и 1 - при статистическом подходе недостижимы.