Собственно, его возражения сводились к тому, что эту же самую теорему теперь можно доказать более простым способом, используя такие теоретические построения, которые не были в свое время известны ни Расселу, ни вычислительной машине. Так подвиг машины и остался безвестным.
Но что из того, что «Логик-теоретик» заново переоткрыл уже известные теоремы? Для него-то они были новы и неизвестны. А изобретателям тоже случается по незнанию открывать уже открытое. Важно, что машина способна к таким же творческим деяниям, как и человек, ученый.
«Мы хотели понять, — говорили создатели „Логика-теоретика“, — как математик приходит к доказательству теоремы, несмотря на то, что он вначале не знает, как решать поставленную задачу, и ему неизвестно вообще, сможет ли он ее решить».
Когда появились первые сообщения о машине, выполняющей сложную теоретическую работу, многие стали возражать, будто деятельность ее нельзя назвать подлинно творческой. Ведь «Логик-теоретик» только решает задачи, поставленные перед ним человеком, то есть лишь ищет ответ. Самостоятельно же выбрать проблему, которую нужно решить, машина не может.
Но это неверно, «Логик-теоретик» не просто умело решает задачи, он находит принцип доказательства, что равноценно настоящему открытию. Причем он думает «с конца»: не составляет план поиска от первого до последнего пункта, а ищет решение, отталкиваясь от конечной цели — доказательства теоремы. И, идя от конца к началу, машина выдвигает новые частные теоремы и ставит себе подцели доказать их. И делает это уже по собственному усмотрению.
Метод «мышления», который применяла машина, довольно часто пускаем в ход и мы с вами.
Мысленно идти в обратном порядке — один из многих эвристических приемов, используемых человеком при решении самых разных проблем. Он хорошо известен, например, всем, кто любит решать головоломки. Особенно наглядно его преимущества видны, если вспомнить, как легко найти выход из Т-образного лабиринта, проследив путь от места, где размещена цель, к началу, и как трудно это сделать, если идти в прямом направлении.
Стоит, может быть, упомянуть, что авторы детективных историй с «неожиданной» развязкой в самом конце нередко начинают обдумывать сюжет именно с развязки, а потом уже приходят к началу повествования. Так легче строить остросюжетный рассказ или роман. Читателям же предоставляется блуждать в нарочно запутанных сюжетных ходах с начала к концу, то есть он должен идти по лабиринту наиболее трудным путем.
Долгое время вообще считалось, что лабиринт (не Т-образный, а более сложный, напоминающий ветвистое дерево) превосходно иллюстрирует схему поисков любого сложного решения. В центре такой паутины ходов находится цель — искомый ответ. Решая задачу, человек словно бродит по запутанным коридорам лабиринта: то заходит в тупики, то кружит на одном месте, то возвращается назад, чтобы снова двинуться вперед. И так, пока, наконец, не достигнет заветной цели — центральной площадки. Теория лабиринта, которая пришла в свое время на смену пресловутым пробам и ошибкам, на первых порах казалась весьма удачной. Опыты с живыми, а потом с механическими мышами, учившимися искать путь в лабиринте, стали классической моделью обучения. Поведение электронного Тезея Шеннона (как шутливо назвал он свою мышь) стало основой для решения многих сложных задач, скажем, игры в пять фишек (пятнадцать). Да и шахматные задачи — по существу лабиринт, только уж очень запутанный.
Но лабиринт, может быть, и помогает понять что-то в механизме мышления, однако характеризует его чисто внешне, не раскрывая внутренних пружин.
Конечно, если искать выход из лабиринта, применяя небезызвестный алгоритм «Британского музея» — простой перебор всех вариантов, это может продолжаться очень долго. Количество маршрутов в этом случае будет достигать астрономической цифры, так что и математик не сможет их пересчитать и выбрать правильный. Вместо лабиринта ходов возникают лабиринты формул, из которых выбраться нисколько не легче.
Нужны какие-то более экономичные приемы. Несомненно, нашему мозгу они известны, и он их успешно применяет. А вот как до них добраться исследователям?
Те же американские психологи — Ньюэл, Шоу, Саймон — попытались отгадать эвристические приемы, которые человек использует для решения самых разных задач: и при поиске математических доказательств, и при решении конструкторских задач, и при анализе физических проблем, и при создании музыки, и при постановке правильного диагноза, и при подборке необходимых красок или единственно нужных слов. Короче говоря, они попытались объять необъятное: создать машину, способную решать самые разные творческие задачи — и научные и стоящие перед людьми искусства.
И такая удивительная машина была создана, вернее — разработана программа ее работы. Назвали ее не очень поэтично — «Универсальный решатель проблем», или сокращенно, по первым буквам английских слов: ДПС.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии