Советский Союз долгое время не располагал отечественными алмазами и вынужден был ввозить их из-за рубежа. В 1954 г. советские геологи нашли в Якутии первое коренное месторождение природных алмазов — кимберлитовую трубку «Зарница». А к концу 1955 г. было обнаружено около десяти месторождений алмазов, пригодных для промышленной разработки. Однако потребность в алмазах растет год за годом и это делало весьма важной задачу создания искусственных алмазов.
Еще перед второй мировой войной советский физико-химик О. И. Лейпунский рассчитал фазовую диаграмму системы графит — алмаз и показал, что при давлении порядка 60 000 атмосфер и температуре выше 2000° кристаллическая решетка графита может путем уплотнения и сближения атомов перейти в решетку алмаза.
В одной из своих статей О. И. Лейпунский писал в 1946 г.: «Во-первых, надо нагреть графит не меньше, чем до 2000°, чтобы атомы углерода могли переходить с места на место. Во-вторых, его надо при этом сжать чудовищным давлением, не меньшим, чем в 60 000 атмосфер. Тогда он обязательно перейдет в алмаз, подобно тому, как камень, подброшенный рукой, обязательно поднимется с земли в воздух».
Однако практическая реализация этой программы оказалась весьма трудным и небезопасным делом. В Советском Союзе эту проблему успешно решили ученые Института физики высоких давлений АН СССР под руководством академика Леонида Федоровича Верещагина. Они разработали специальные «алмазные» прессы и методы контроля основных физических параметров в камерах, где протекает синтез алмазов.
Первые советские искусственные алмазы имеют размеры порядка 1
В 1966 г. академик Л. Ф. Верещагин получил искусственные алмазы размером 3–4
СВЕРХТЕКУЧЕСТЬ ЖИДКОГО ГЕЛИЯ
Советские физики сделали весьма крупный вклад в изучение физики низких температур.
Академик П. Л. Капица создал новый тип машин для производства жидкого воздуха — турбодетандеры, работающие при низких давлениях. Эти машины получили в дальнейшем весьма широкое распространение.
Академик Л. Д. Ландау разработал теорию перехода металлов в сверхпроводящее состояние. Этот переход происходит не мгновенно, а через так называемое промежуточное состояние, являющееся своеобразной смесью сверхпроводящих и несверхпроводящих слоев. Наличие таких слоев в металле в условиях переходного состояния было подтверждено членом-корреспондентом АН СССР А. И. Шальниковым в исключительно тонких экспериментах.
В 1957 г. академик Н. Н. Боголюбов разработал (одновременно с американскими физиками Бардиным, Купером и Щрифером) теорию сверхпроводимости.
Развитая академиками Л. Д. Ландау и В. Л. Гинзбургом и членами-корреспондентами АН СССР А. А. Абрикосовым и Л. П. Горьковым теория сверхпроводящих сплавов (так называемый «метод ГЛАГ») открывает путь к получению сверхпроводников, пригодных для различных практических применений.
В этом разделе мы остановимся подробнее на замечательном открытии, сделанном академиком Петром Леонидовичем Капицей, — сверхтекучести жидкого гелия.
Если охладить гелий до температуры
Голландский физик Кеезом, один из первых исследователей гелия-II, в 1936 г. показал, что теплопроводность гелия-II, измеренная в капиллярах, намного выше теплопроводности меди или серебра — наиболее теплопроводных металлов. Поэтому Кеезом назвал гелий-II сверхтеплопроводным веществом.