– Все, что нам остается – это рассказать ей правду, – заметил Матис.
– Если говорить по правде, то мы и сами не знаем, готовы ли к этому прыжку. – Сагреда потерла здоровую сторону своей раздробленной руки; на ощущение боли это не повлияло, но хотя бы помогло от нее отвлечься.
– Верно. Но что ты предлагаешь? Отправиться в круиз по еще двадцати мирам, надеясь обнаружить в них новые подсказки?
– Если в «3-адике» исполняются любые желания, почему оттуда никто не возвращается? – спросила она.
– Может быть, там настолько хорошо, что никто не хочет уходить?
– Даже на пару дней, чтобы рассказать об этом мире остальным?
– Не знаю, – признался Матис.
– Что такое «3-адика»? – спросила Люси. Ее глаза были открыты, а сама она демонстрировала все признаки человека, находящегося в полном сознании.
Сагреда принесла кувшин с водой. – Давно ты проснулась? – спросила она, передавая девочке стакан.
– Давненько. – Люси выпила воду одним большим глотком, после чего вышла, чтобы воспользоваться ночным горшком. Вернувшись, она сказала: «Я ведь помогла вам закончить мандалу, не так ли? Так что вы просто обязаны раскрыть мне природу ее сил».
К этому вопросу Сагреда готовилась целый день. – Она перенесет нас в мир, где расстояния между числами не такие, как здесь.
Люси нахмурилась, но ее лицо выражало, скорее, интригу, чем снисхождение.
– Смотри, все числа можно расположить на прямой линии, – объяснила Сагреда. – Как номера домов на одной улице. Тогда расстояние между двумя домами совпадет с разностью их номеров: номер двенадцать окажется на два дома дальше, чем десятый… в большинстве случаев. – В чем бы ни заключалась историческая правда, эта версия викторианского Лондона, похоже, так и не определилась, следует ли придерживаться последовательной нумерации домов на обеих сторонах улицы, или же перейти на более привычное основателями Сагреды правило «чет-нечет».
– То есть вы отправляетесь в мир, где дома стоят как попало? – предположила Люси.
– Пожалуй, хотя это и не объясняет всей сути. – Сагреда подошла к письменному столу, взяла лист бумаги и принялась вырисовывать небрежные чернильные овалы. – В «3-адике» числа похожи на яйца в воробьином гнезде. Ноль, единица и двойка занимают одно и то же гнездо, и расстояние между любыми двумя из них равно единице.
– Между единицей и двойкой один шаг, – сказала Люси. – И между нулем и двойкой… тоже?
– Именно, – подтвердила Сагреда. – Правила арифметики не меняются: два минус ноль по-прежнему равно двум, а не единице. Однако законы геометрии становятся другими, и
– Но где же тройка? – спросила Люси. – Где семьдесят три?
– Каждое из нарисованных мной яиц, – ответила Сагреда, – само по себе является миниатюрным гнездом. Яйцо под номером 0 – это гнездо из чисел ноль, три и шесть. Яйцо под номером 1 – гнездо из чисел один, четыре, семь. Яйцо под номером 2 – гнездо из чисел два, пять, восемь. – Она вписала новые числа внутрь овалов.
– То, что вы написали, я вижу прекрасно, – признала Люси, – но я не понимаю, какой в этом смысл.
– Чем меньше гнездо, в котором находится пара чисел, тем они ближе друг к другу, – объяснила Сагреда. – Расстояние между нулем и единицей равно единице, потому что именно таков размер минимального гнезда, в котором находятся оба этих числа. Но если мы возьмем, к примеру, ноль и тройку, которые расположены в более мелком гнезде, расстояние между ними окажется меньше. Если говорить точнее, то оно будет равно одной трети – так же, как и расстояние между пятеркой и восьмеркой, или четверкой и семеркой.
– И дальше вы просто повторяете этот абсурд снова и снова? – спросила Люси.
Сагреда улыбнулась. – Именно. Каким бы большим ни было число, чтобы досчитать до него, ты просто заменяешь яйца на все более мелкие гнезда, по три штуки в каждом.
Какое-то время Люси сидела, размышляя над услышанным, но что-то, очевидно, не давало ей покоя. – Вы говорите, что расстояние между нулем и тройкой равно одной трети, – наконец, сказала она. – Но где же среди этих гнезд находится сама
– Одну треть нужно искать снаружи первого гнезда. – Сагреда добавила еще два яйца – такого же размера, как и первое, – а затем заключила все три в еще больший овал. – Если ты добавишь одну треть к любому числу из первого гнезда, то окажешься во втором. Добавишь две трети – и попадешь в третье. Любые два числа, оказавшиеся в разных частях этого нового, большого гнезда, будут находиться на расстоянии в три единицы, потому что именно такой размер имеет окружающее их гнездо. И прежде чем ты спросишь, где находится
Люси впитала ее слова, но вопросы на этом не закончились. – А как быть с