Читаем 2000 №3 полностью

Если в точке О зафиксировано мюонное нейтрино, летящее в направлении точки Р, это значит, что из О летят три «цветные» компоненты, интенсивность которых пропорциональна коэффициентам их смешивания в мюонном нейтрино. Элементарные частицы, можно представлять себе как волны, поэтому в каждой точке на своем пути частицы-волны, будут иметь и разные амплитуды. И может оказаться так, что в точке Р сложится вовсе не мюонное нейтрино, а электронное, а в точке Р — таонное.

ЗВЕЗДНЫЙ ДОЖДЬ ОТКРЫТИЙ

Параллельно с группой Ф. Рейнеса поимкой нейтрино занималась группа Р. Дэвиса. Идею их опыта еще в 1946 году предложил Бруно Понтекорво. Его идея состояла в следующем. Известен вариант реакции (3-распада: захват ядром изотопа аргона 37Аr собственного орбитального электрона (К-захват) с испусканием нейтрино 37Аr + е- —> 37Cl + v. Должна быть и обратная реакция захвата нейтрино изотопом 37Сl с образованием аргона 37Аr. Фиксация «беспричинного» образования атомов аргона в чисто хлорной мишени, облученной потоком нейтрино из реактора, означало бы фиксацию самого нейтрино. Однако в 1956 году Р. Дэвис опубликовал результат: реакция не идет. Если этот факт объединить с открытием нейтрино Рейнесом, то вывод будет единственным: нейтрино из К-захвата и реакторное нейтрино из (β-распада различны. Они соотносятся как частица (v) и античастица (v).

Спустя год в эксперименте группы Ц. By с (β-распадом 60Со было показано, что в реакциях с участием нейтрино (слабых взаимодействиях) нарушается зеркальная симметрия (закон сохранения четности). Оказалось, что в мире элементарных частиц правое и левое не условные названия, а внутреннее свойство частиц. Интересно, что это фундаментальное открытие могло бы состояться на 30–40 лет раньше, если бы не теоретическое предубеждение в нерушимости право-левосимметричного мира. Ведь все нужное для опыта оборудование было в распоряжении экспериментаторов еще в 30-е годы. От «пустой» траты времени на проверку удерживали вера в законы симметрии и, может быть, то, что в такую возможность не поверил В. Паули: «Бог не может быть слаборуким левшой». И вот под напором эксперимента принцип симметрии рухнул в одном из прочнейших звеньев!

В 1962 году Леон Ледерман экспериментально доказал, что электронное нейтрино, рождаемое в паре с позитроном, отличается от мюонного, которое рождается в паре с мюоном. А когда в 1975 году М. Перл открыл третий заряженный лептон τ±, стало ясно, что существует и третье нейтрино — таонное vτ. И все они имеют соответствующие античастицы.

Чтобы объяснить появление всех этих видов нейтрино, пришлось ввести еще одну квантовую характеристику — так называемое лептонное число. Оказалось, что при любом взаимодействии сумма всех лептонных чисел до взаимодействия и после него должна сохраняться. Казалось бы, выведен еще один фундаментальный закон, определяющий, какие реакции могут идти, а какие нет. Однако все оказалось не так просто…

Академик Бруно Понтекорво, итальянский физик, с 1950 года работал в нашей стране. В 1946 году предложил эксперимент по определению массы нейтрино, который неоднократно проводился в разных странах со все возрастающей точностью. (См. «Наука и жизнь» № 12, 1963 г.).

ОЖИДАЕМЫЕ «СЮРПРИЗЫ»

Только-только с помощью сохраняющихся лептонных чисел физики навели порядок в свойствах нейтрино: запретили то, что «не положено», и разрешили все остальное, как тут же принялись разрушать такой красивый и необходимый закон. Видимо, после падения зеркальной симметрии (закона сохранения четности) повеял ветер свободы от запретов. Зачинщиком опять был Бруно Понтекорво. В 1958 году, уже работая в Дубне, он заметил, что никакой принцип, кроме закона сохранения лептонного числа, не запрещает нейтрино одного типа (аромата) самопроизвольно превратиться в нейтрино иного аромата. А если вдруг электронное нейтрино превратится в мюонное, то о сохранении лептонного заряда нейтрино надо прочно забыть.

Перейти на страницу:

Все книги серии Наука и жизнь, 2000

Похожие книги