Читаем 2000 №2 полностью

Понятие скорости распространения волны оказывается простым только в отсутствие дисперсии. Если скорость волны не зависит от ее частоты, импульс распространяется без искажения и с постоянной скоростью (а). В противном случае форма импульса при распространении меняется (б). При этом простое понятие скорости импульса приходится заменять рядом других: скорости фронта, распространения сигнала, передачи энергии и т. д. Если в среде проходит гармоническая волна (например, когерентное лазерное излучение), сохраняется смысл перемещения фазы (горба или впадины) волны. Эта скорость v называется фазовой (в). Если в течение какого-то интервала времени форма импульса сохраняется, можно говорить о перемещении огибающей этой группы волн — групповой скорости и. Внутри огибающей волна движется с некоторой средней скоростью v. В зависимости от свойств среды групповая скорость может быть и больше фазовой, и меньше нее, она может быть равна нулю и даже иметь отрицательный знак: импульс «растягивается» в сторону, противоположную движению волны.

Статистика Бозе-Эйнштейна. Это один из видов так называемой квантовой статистики — теории, описывающей состояние систем, содержащих очень большое число частиц, подчиняющихся законам квантовой механики.

Все частицы — как заключенные в атоме, так и свободные — делятся на два класса. Для одного из них справедлив принцип запрета Паули, в соответствии с которым на каждом энергетическом уровне не может находиться более одной частицы. Такие частицы называются фермионами (электроны, протоны и нейтроны в этот же класс входят частицы, состоящие из нечетного числа фермионов), а закон их распределения называется статистикой Ферми — Дирака. Частицы другого класса называются бозонами и не подчиняются принципу Паули, на одном энергетическом уровне может скапливаться неограниченное число бозонов. В этом случае говорят о статистике Бозе— Эйнштейна. К бозонам относятся фотоны, некоторые короткоживущие элементарные частицы (например, пи-мезоны), а также атомы, состоящие из четного числа фермионов. При очень низких температурах бозоны собираются на самом низком — основном — энергетическом уровне; тогда говорят, что происходит бозе-эйнштейновская конденсация. Атомы конденсата теряют свои индивидуальные свойства, и несколько миллионов их начинают вести себя как одно целое, их волновые функции сливаются, а поведение описывается одним уравнением. Это дает возможность говорить, что атомы конденсата стали когерентными, подобно фотонам в лазерном излучении. Исследователи из американского Национального института стандартов и технологий использовали это свойство конденсата Бозе-Эйнштейна для создания «атомного лазера» (см. «Наука и жизнь» № 10, 1997 г.).

Лин Вестергард Хэу возле установки, на которой был проведен уникальный эксперимент. (Его описание см. на стр. 44.)

Самоиндуцированная прозрачность. Это один из эффектов нелинейной оптики — оптики мощных световых полей. Он заключается в том, что очень короткий и мощный световой импульс проходит без ослабления через среду, которая поглощает непрерывное излучение или длинные импульсы: непрозрачная среда становится для него прозрачной. Самоиндуцированная прозрачность наблюдается в разреженных газах при длительности импульса порядка 10-7-10-8 с и в конденсированных средах — менее 10-11 с. При этом возникает запаздывание импульса — его групповая скорость сильно уменьшается. Впервые этот эффект был продемонстрирован Мак-Коллом и Ханом в 1967 году на рубине при температуре 4 К. В 1970 году в парах рубидия были получены задержки, соответствующие скоростям импульса, на три порядка (в 1000 раз) меньшим скорости света в вакууме.

Перейти на страницу:

Все книги серии Наука и жизнь, 2000

Похожие книги