Читаем 120 практических задач полностью

# Шаг 4: Компиляция и обучение модели

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=10,

validation_data=(test_images, test_labels))

# Шаг 5: Оценка модели

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print(f'\nТочность на тестовых данных: {test_acc}')

# Визуализация процесса обучения

plt.plot(history.history['accuracy'], label='Точность на обучающем наборе')

plt.plot(history.history['val_accuracy'], label='Точность на валидационном наборе')

plt.xlabel('Эпоха')

plt.ylabel('Точность')

plt.legend(loc='lower right')

plt.show

```

Пояснение:

1. Импорт библиотек: Загружаются необходимые библиотеки TensorFlow и Keras для построения и обучения модели.

2. Подготовка данных: Загрузка набора данных CIFAR-10, который содержит 60,000 цветных изображений размером 32x32, разделенных на 10 классов. Данные нормализуются, чтобы ускорить обучение.

3. Построение модели: Модель создается как последовательная (Sequential). Добавляются несколько сверточных слоев, за которыми следуют слои подвыборки (Pooling) и полносвязные слои.

4. Компиляция и обучение: Модель компилируется с использованием оптимизатора Adam и функции потерь Sparse Categorical Crossentropy. Затем модель обучается на тренировочных данных.

5. Оценка и тестирование: После обучения модель оценивается на тестовых данных, и визуализируется точность на тренировочном и валидационном наборах данных.

Эта структура сети может быть расширена и усложнена в зависимости от задачи и доступных данных.

Построение модели

Создание последовательной модели (Sequential)

Для создания сложной сверточной нейронной сети (CNN) мы будем использовать последовательную модель `Sequential` из библиотеки Keras. Этот тип модели позволяет добавлять слои один за другим, что упрощает процесс построения и настройки сети.

Добавление сверточных слоев

Сверточные слои (Conv2D) являются основным элементом CNN. Они применяют фильтры к входному изображению, чтобы выделить различные признаки, такие как края, текстуры и другие важные детали. В нашем примере мы добавляем три сверточных слоя:

1. Первый сверточный слой:

```python

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))

```

– 32 фильтра: Каждый фильтр будет извлекать определенный признак из изображения.

– Размер фильтра 3x3: Это небольшой размер, который хорошо подходит для выделения мелких деталей.

– Функция активации ReLU: Rectified Linear Unit (ReLU) помогает сети обучаться нелинейным отношениям между признаками.

– input_shape=(32, 32, 3): Указываем форму входных данных (32x32 пикселя, 3 цветовых канала).

2. Второй сверточный слой:

```python

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

```

–64 фильтра: Увеличиваем количество фильтров, чтобы сеть могла извлекать более сложные признаки.

3. Третий сверточный слой:

```python

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

```

– Дополнительный сверточный слой для дальнейшего выделения признаков.

Добавление слоев подвыборки (Pooling)

Слои подвыборки (MaxPooling2D) уменьшают размерность выходных данных от сверточных слоев, что снижает вычислительную сложность и помогает избежать переобучения. Они выбирают максимальное значение из каждого подмассива данных, тем самым сохраняя наиболее значимые признаки.

1. Первый слой подвыборки:

```python

model.add(layers.MaxPooling2D((2, 2)))

```

– Размер пула 2x2: Снижение размерности выходных данных в два раза по каждой оси.

2. Второй слой подвыборки:

```python

model.add(layers.MaxPooling2D((2, 2)))

```

– Дополнительный слой подвыборки для дальнейшего уменьшения размерности данных.

Добавление полносвязных слоев (Fully Connected Layers)

После извлечения признаков из изображений с помощью сверточных и подвыборочных слоев, мы используем полносвязные слои (Dense) для классификации. Эти слои соединяют каждый нейрон предыдущего слоя с каждым нейроном текущего слоя.

1. Приведение данных в одномерный вид:

```python

model.add(layers.Flatten)

```

– Преобразование многомерного выхода сверточных слоев в одномерный вектор.

2. Первый полносвязный слой:

```python

model.add(layers.Dense(64, activation='relu'))

```

– 64 нейрона: Обучение нелинейным комбинациям признаков.

3. Выходной полносвязный слой:

```python

model.add(layers.Dense(10))

```

– 10 нейронов: Каждый нейрон соответствует одному классу из 10 в наборе данных CIFAR-10.

Построенная таким образом сеть состоит из нескольких сверточных слоев для извлечения признаков, слоев подвыборки для уменьшения размерности данных и полносвязных слоев для классификации. Эта архитектура позволяет эффективно решать задачу классификации изображений, выделяя важные признаки и обучаясь на их основе.

<p><strong>5. Построение простой рекуррентной нейронной сети для анализа временных рядов</strong></p>

– Задача: Прогнозирование цен на акции.

Перейти на страницу:

Похожие книги

1917–1920. Огненные годы Русского Севера
1917–1920. Огненные годы Русского Севера

Книга «1917–1920. Огненные годы Русского Севера» посвящена истории революции и Гражданской войны на Русском Севере, исследованной советскими и большинством современных российских историков несколько односторонне. Автор излагает хронику событий, военных действий, изучает роль английских, американских и французских войск, поведение разных слоев населения: рабочих, крестьян, буржуазии и интеллигенции в период Гражданской войны на Севере; а также весь комплекс российско-финляндских противоречий, имевших большое значение в Гражданской войне на Севере России. В книге используются многочисленные архивные источники, в том числе никогда ранее не изученные материалы архива Министерства иностранных дел Франции. Автор предлагает ответы на вопрос, почему демократические правительства Северной области не смогли осуществить третий путь в Гражданской войне.Эта работа является продолжением книги «Третий путь в Гражданской войне. Демократическая революция 1918 года на Волге» (Санкт-Петербург, 2015).В формате PDF A4 сохранён издательский дизайн.

Леонид Григорьевич Прайсман

История / Учебная и научная литература / Образование и наука
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода

Правда о самом противоречивом князе Древней Руси.Книга рассказывает о Георгии Всеволодовиче, великом князе Владимирском, правнуке Владимира Мономаха, значительной и весьма противоречивой фигуре отечественной истории. Его политика и геополитика, основание Нижнего Новгорода, княжеские междоусобицы, битва на Липице, столкновение с монгольской агрессией – вся деятельность и судьба князя подвергаются пристрастному анализу. Полемику о Георгии Всеволодовиче можно обнаружить уже в летописях. Для церкви Георгий – святой князь и герой, который «пал за веру и отечество». Однако существует устойчивая критическая традиция, жестко обличающая его деяния. Автор, известный историк и политик Вячеслав Никонов, «без гнева и пристрастия» исследует фигуру Георгия Всеволодовича как крупного самобытного политика в контексте того, чем была Древняя Русь к началу XIII века, какое место занимало в ней Владимиро-Суздальское княжество, и какую роль играл его лидер в общерусских делах.Это увлекательный рассказ об одном из самых неоднозначных правителей Руси. Редко какой персонаж российской истории, за исключением разве что Ивана Грозного, Петра I или Владимира Ленина, удостаивался столь противоречивых оценок.Кем был великий князь Георгий Всеволодович, погибший в 1238 году?– Неудачником, которого обвиняли в поражении русских от монголов?– Святым мучеником за православную веру и за легендарный Китеж-град?– Князем-провидцем, основавшим Нижний Новгород, восточный щит России, город, спасший независимость страны в Смуте 1612 года?На эти и другие вопросы отвечает в своей книге Вячеслав Никонов, известный российский историк и политик. Вячеслав Алексеевич Никонов – первый заместитель председателя комитета Государственной Думы по международным делам, декан факультета государственного управления МГУ, председатель правления фонда "Русский мир", доктор исторических наук.В формате PDF A4 сохранен издательский макет.

Вячеслав Алексеевич Никонов

История / Учебная и научная литература / Образование и наука