Читаем 120 практических задач полностью

# Сборка модели GAN

generator = build_generator

discriminator = build_discriminator

discriminator.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

gan_input = layers.Input(shape=(100,))

generated_image = generator(gan_input)

discriminator.trainable = False

gan_output = discriminator(generated_image)

gan = tf.keras.Model(gan_input, gan_output)

gan.compile(optimizer='adam', loss='binary_crossentropy')

```

3. Обучение модели

```python

import tensorflow as tf

# Гиперпараметры

epochs = 10000

batch_size = 64

sample_interval = 200

latent_dim = 100

# Генерация меток

real_labels = np.ones((batch_size, 1))

fake_labels = np.zeros((batch_size, 1))

for epoch in range(epochs):

# Обучение дискриминатора

idx = np.random.randint(0, train_images.shape[0], batch_size)

real_images = train_images[idx]

noise = np.random.normal(0, 1, (batch_size, latent_dim))

fake_images = generator.predict(noise)

d_loss_real = discriminator.train_on_batch(real_images, real_labels)

d_loss_fake = discriminator.train_on_batch(fake_images, fake_labels)

d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

# Обучение генератора

noise = np.random.normal(0, 1, (batch_size, latent_dim))

g_loss = gan.train_on_batch(noise, real_labels)

# Печать прогресса

if epoch % sample_interval == 0:

print(f"{epoch} [D loss: {d_loss[0]}, acc.: {100*d_loss[1]}] [G loss: {g_loss}]")

sample_images(generator)

def sample_images(generator, image_grid_rows=4, image_grid_columns=4):

noise = np.random.normal(0, 1, (image_grid_rows * image_grid_columns, latent_dim))

gen_images = generator.predict(noise)

gen_images = 0.5 * gen_images + 0.5

fig, axs = plt.subplots(image_grid_rows, image_grid_columns, figsize=(10, 10))

cnt = 0

for i in range(image_grid_rows):

for j in range(image_grid_columns):

axs[i,j].imshow(gen_images[cnt])

axs[i,j].axis('off')

cnt += 1

plt.show

```

4. Генерация изображений

После завершения обучения, можно использовать генератор для создания новых изображений ландшафтов.

```python

noise = np.random.normal(0, 1, (1, latent_dim))

generated_image = generator.predict(noise)

generated_image = 0.5 * generated_image + 0.5 # Возвращение значений к диапазону [0, 1]

plt.imshow(generated_image[0])

plt.axis('off')

plt.show

```

Этот код даст вам базовую генеративно-состязательную сеть для создания реалистичных изображений ландшафтов. Для улучшения качества изображений можно рассмотреть использование улучшенных архитектур GAN, таких как DCGAN или ProGAN.

<p><strong>31. Создание модели для прогнозирования спортивных результатов</strong></p>

– Задача: Прогнозирование исходов спортивных событий.

Прогнозирование исходов спортивных событий является одной из самых популярных и сложных задач в области аналитики данных и машинного обучения. Для создания такой модели необходимо учитывать множество факторов, начиная от индивидуальных характеристик игроков и команд, заканчивая погодными условиями и историей предыдущих матчей. Основные этапы разработки модели включают сбор данных, предобработку, выбор и обучение модели, а также оценку её эффективности.

1. Сбор данных

Для начала требуется собрать подробные данные о спортивных событиях. Это могут быть данные о предыдущих матчах, статистика команд и игроков, травмы, погодные условия, и другие релевантные параметры. Источники данных могут включать спортивные API, базы данных, и сайты, такие как ESPN, Opta, и другие.

2. Предобработка данных

Данные часто бывают разнородными и содержат много шума, поэтому их нужно очистить и подготовить:

– Очистка данных: удаление или замена пропущенных значений, исправление ошибок в данных.

– Форматирование данных: преобразование данных в формат, пригодный для анализа (например, числовые значения, категориальные переменные).

– Фичевая инженерия: создание новых признаков на основе имеющихся данных (например, среднее количество голов за матч, процент побед на домашнем стадионе).

3. Выбор модели

Для прогнозирования спортивных результатов можно использовать несколько типов моделей машинного обучения, таких как:

– Логистическая регрессия: подходит для бинарной классификации (победа/поражение).

– Решающие деревья и случайные леса: могут учитывать сложные зависимости между признаками.

– Градиентный бустинг (XGBoost, LightGBM): мощные методы для работы с табличными данными.

– Нейронные сети: особенно полезны, если данные содержат сложные и нелинейные зависимости.

4. Обучение модели

После выбора модели необходимо обучить её на исторических данных. Для этого данные обычно делят на тренировочный и тестовый наборы. Модель обучается на тренировочных данных и оценивается на тестовых.

5. Оценка модели

Для оценки качества модели используют различные метрики, такие как точность (accuracy), полнота (recall), точность (precision) и F1-оценка. Также можно использовать специфические метрики для задач с несбалансированными классами, например, ROC-AUC.

Пример реализации на Python

Рассмотрим пример реализации модели на Python с использованием библиотеки scikit-learn.

```python

Перейти на страницу:

Похожие книги

1917–1920. Огненные годы Русского Севера
1917–1920. Огненные годы Русского Севера

Книга «1917–1920. Огненные годы Русского Севера» посвящена истории революции и Гражданской войны на Русском Севере, исследованной советскими и большинством современных российских историков несколько односторонне. Автор излагает хронику событий, военных действий, изучает роль английских, американских и французских войск, поведение разных слоев населения: рабочих, крестьян, буржуазии и интеллигенции в период Гражданской войны на Севере; а также весь комплекс российско-финляндских противоречий, имевших большое значение в Гражданской войне на Севере России. В книге используются многочисленные архивные источники, в том числе никогда ранее не изученные материалы архива Министерства иностранных дел Франции. Автор предлагает ответы на вопрос, почему демократические правительства Северной области не смогли осуществить третий путь в Гражданской войне.Эта работа является продолжением книги «Третий путь в Гражданской войне. Демократическая революция 1918 года на Волге» (Санкт-Петербург, 2015).В формате PDF A4 сохранён издательский дизайн.

Леонид Григорьевич Прайсман

История / Учебная и научная литература / Образование и наука
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода

Правда о самом противоречивом князе Древней Руси.Книга рассказывает о Георгии Всеволодовиче, великом князе Владимирском, правнуке Владимира Мономаха, значительной и весьма противоречивой фигуре отечественной истории. Его политика и геополитика, основание Нижнего Новгорода, княжеские междоусобицы, битва на Липице, столкновение с монгольской агрессией – вся деятельность и судьба князя подвергаются пристрастному анализу. Полемику о Георгии Всеволодовиче можно обнаружить уже в летописях. Для церкви Георгий – святой князь и герой, который «пал за веру и отечество». Однако существует устойчивая критическая традиция, жестко обличающая его деяния. Автор, известный историк и политик Вячеслав Никонов, «без гнева и пристрастия» исследует фигуру Георгия Всеволодовича как крупного самобытного политика в контексте того, чем была Древняя Русь к началу XIII века, какое место занимало в ней Владимиро-Суздальское княжество, и какую роль играл его лидер в общерусских делах.Это увлекательный рассказ об одном из самых неоднозначных правителей Руси. Редко какой персонаж российской истории, за исключением разве что Ивана Грозного, Петра I или Владимира Ленина, удостаивался столь противоречивых оценок.Кем был великий князь Георгий Всеволодович, погибший в 1238 году?– Неудачником, которого обвиняли в поражении русских от монголов?– Святым мучеником за православную веру и за легендарный Китеж-град?– Князем-провидцем, основавшим Нижний Новгород, восточный щит России, город, спасший независимость страны в Смуте 1612 года?На эти и другие вопросы отвечает в своей книге Вячеслав Никонов, известный российский историк и политик. Вячеслав Алексеевич Никонов – первый заместитель председателя комитета Государственной Думы по международным делам, декан факультета государственного управления МГУ, председатель правления фонда "Русский мир", доктор исторических наук.В формате PDF A4 сохранен издательский макет.

Вячеслав Алексеевич Никонов

История / Учебная и научная литература / Образование и наука