Кроме того, графен имеет высокую тепло– и электропроводность. А для полупроводниковой промышленности весьма необходимы материалы, в которых бы носители электрического заряда – электроны – могли перемещаться без помех. Дело в том, что всюду, где электроны натыкаются на препятствия и отклоняются от заданного прямого пути, идет интенсивное выделение тепла. Кроме того, подобные потери ограничивают рабочую частоту действия тех или иных компонентов микроэлектронных схем.
Например, в кремнии электроны могут передвигаться относительно свободно. Но у арсенида галлия степень свободы электронов еще в 6 раз выше. Поэтому в мобильниках и приемниках спутниковых сигналов используются микропроцессоры на основе именно арсенида галлия, а не кремния.
Это свойство, которое называется подвижностью электронов, в графеновых пленках близко к абсолютному идеалу; электроны практически не рассеиваются и весьма мало реагируют на изменения внешней среды. Однако произвести точные замеры свойств графена ученым долгое время не удалось – уж слишком тонка пленка. А потому только недавно выяснилось, что по подвижности электронов графен превосходит все известные на сегодня вещества.
«По нашим данным выходит, что подвижность электронов в графене в 10–20 раз выше, чем в арсениде галлия, – уверяет профессор Гейм. – Этот качественный скачок открывает блестящие возможности разработки новых еще более скоростных компонентов схем микроэлектроники. Тут уже речь пойдет не о мега– и гигагерцах, как в нынешних компьютерах, а о террагерцах, то есть в 1000 раз более высоких показателях».
Далее ученые приступили к созданию графенового полевого транзистора, который, используя электрическое поле, обеспечивает так называемый баллистический транспорт электронов, при котором они практически не рассеиваются.
В общем, оказалось, что баллистические транзисторы работают гораздо быстрее, чем обычные кремниевые устройства такого рода. А потому открытие Гейма – Новоселова вызвало большой интерес к графену как к материалу для электроники нового поколения.
Однако есть и определенные препятствия на пути внедрения графеновых структур в производство. Во-первых, нет еще технологии, которая бы позволила наладить массовое производство графеновых структур с одинаковыми показателями – пока пленки делают практически вручную. Кроме того, первые транзисторы на графеновой основе оказались весьма медленными и не могут пока составить серьезную конкуренцию нынешним микросхемам.
Впрочем, как полагают энтузиасты нового направления, это лишь трудности роста молетроники – микроэлектроники, схемы которой оперируют уже с отдельными молекулами. «С первыми кремниевыми транзисторами исследователи тоже повозились изрядно, – вспоминает Константин Новоселов. – И находились скептики, которые говорили, что из этой затеи ровным счетом ничего не получится и лучше радиоламп вряд ли можно что-то придумать. Так что лет через двадцать, глядишь, новое поколение электронщиков будут вспоминать о нынешних микросхемах примерно так же, как ныне мы рассуждаем о тех же радиолампах».
Чудеса «самолечения»
Новый удивительный материал, который удалось синтезировать исследователям, не только эластичен, словно резина. Он еще способен в течение недели полностью восстановить разрыв или разрез. Для этого достаточно просто сложить вместе две его части. Уже через четверть часа обе части как бы склеиваются, а через несколько дней от места повреждения не остается и следа.
Такие материалы, способные к «самолечению», ученые и инженеры пытались создать еще давным-давно. Поначалу они создали материалы, в структуре которых содержались микрокапсулы с клеящим составом. Если возникает трещина, клей из разорванных капсул заполняет ее и застывает на воздухе или при смешивании с отвердителем из других капсул. Именно таким способом ныне сами собой заклеиваются пробитые шины на некоторых автомобилях.