Еще одно обстоятельство сыграло большую роль в технической политике по системам стыковки. Речь идет о внутреннем интерфейсе, присоединительных размерах между стыковочным агрегатом и отсеком корабля или модуля, на который он устанавливался. Несмотря на увеличенные размеры стыковочного шпангоута, мы сделали все, чтобы новый АПАС мог стать на те же посадочные места, на которые устанавливались все наши стыковочные агрегаты: штырь–конус, активный и пассивный, и АПАС-75. Сделали так, чтобы их габариты не вылезали за пределы зоны полезного груза под обтекателем ракеты–носителя. Этот момент тоже стал ключевым — такая техническая политика значительно облегчила будущее согласование с нашими проектантами и конструкторами–компоновщиками. Все это способствовало успеху, когда будущий АПАС вставал на «Союз», а также на другие корабли и модули.
Таким путем удалось избежать больших проблем при разработке вариантов различных кораблей и модулей, и не только на бумаге. Особенно остро эти проблемы действительно возникали намного позже, почти 20 лет спустя, когда появились небольшие серии, модификации «Союзов» с АПАС-89. Тогда это избавило нас от многих хлопот и сэкономило значительные средства.
Руководить — это значит предвидеть.
Идея замены стыковочного механизма вызвала своеобразную цепную реакцию идей.
Используя шпангоут как конструктивную базу, можно на ее основе создавать различные модификации стыковочных агрегатов. В результате родился проект так называемой унифицированной серии стыковочных агрегатов. Агрегаты этой серии имели одинаковые базовые установочные размеры и все параметры наружного стыка. Наружный стык, или интерфейс, как его стали называть на американский манер, определялся взаимодействующими при стыковке элементами, он обеспечивал совместимость при стыковке. Все агрегаты унифицированной серии стали совместимы между собой. Эти агрегаты могли отличаться комплектацией и другими характеристиками, быть активно–пассивными, т. е. андрогинными или только пассивными. Предусматривалась разработка негерметичных конструкций и вырожденных агрегатов, лишенных замков жесткого соединения, они обеспечивали только сцепку космических аппаратов между собой.
Концепция унифицированной серии возродила идею о сменных стыковочных механизмах, которая впервые возникла еще в 1968 году при разработке стыковочного устройства для проекта «Союз» — «Салют». На новом этапе эта плодотворная дебютная идея открыла новые большие возможности, позволила создать универсальные конструкции, которые можно превращать в «папу», в «маму» или в их андрогинные порождения путем замены стыковочного механизма, делать их активными или пассивными.
Эти превращения стали чем?то напоминать научно–техническую фантастику: до чего может довести древнегреческая мифология и ее наследница, современная космическая техника.
Фантастика или фантазия, а спустя 20 лет на самом деле появились так называемые гибридные стыковочные агрегаты, сначала в чертежах, а потом в железе. О них детально будет рассказано в следующей главе.
Моя диссертация была защищена летом 1979 года. Уже в это время конструкторы приступили к детальной разработке.
Дальнейшая работа развивалась в двух направлениях — мы работали, так сказать, на два фронта. С одной стороны, мой, образованный в конце 1977 года, самостоятельный отдел, объединивший всех стыковщиков, приступил к детальной конструктивной разработке как нового АПАСа, так и системы управления стыковкой, ее основных компонентов и приборов. С другой стороны, я продолжал искать применение своему новому андрогинному «бэби», уже зачатому, но еще не родившемуся.
Оставался ряд внутренних конструктивных проблем: в первую очередь требовалось усовершенствовать две основные группы механизмов. Кинематическая схема стыковочного механизма, который перекочевал внутрь переходного тоннеля, его дифференциальная кинематика и большинство основных узлов остались прежними. Однако один из них, так называемый блок дифференциалов, нуждался в упрощении. Этот блок, чем?то похожий на задний мост автомобиля, но имевший не один, а два шестеренчатых дифференциала, выполнял целый ряд функций. Хотелось уменьшить число подвижных деталей, сделать конструкцию более компактной и эффективной. Если продолжить автомобильную аналогию, можно сказать, что мы хотели сделать нашу машину переднеприводной. Пожалуй, эта аналогия отражает лишь сложность задачи. Кажется, нам удалось многое сделать, хотя и модифицированный блок остался самым сложным узлом АПАСа. Надеюсь, что этот вариант не последний, тем более что есть идеи, каким путем идти дальше.