Пользуясь медицинской терминологией, можно сказать, что Гёдель использовал в качестве скальпеля для вскрытия аксиоматики теории множеств так называемое «арифметическое утверждение G» (означающее в переводе на обычный, нематематический язык, что некоторое утверждение является недоказуемым) в сочетании с приемом его отображения. Гёдель перевел G-утверждения на язык арифметики и получил следующий замечательный результат: любая согласованная формальная математическая система, включающая в себя все правила арифметики, содержит в себе математический эквивалент G-утверждения и, следовательно, является несогласованной, т. е. в ней существуют утверждения, которые одновременно невозможно доказать или опровергнуть данным набором правил. Это открытие было сформулировано им в виде двух «теорем о неразрешимости», имеющих следующий вид:
1. Если аксиоматическая теория множеств является согласованной, то в ней существуют теоремы, которые нельзя ни доказать, ни опровергнуть.
2. Не существует конструктивной процедуры, позволяющей доказать согласованность аксиоматической теории множеств.
Естественно, что используемый для доказательства математический аппарат был достаточно сложным, однако полученные результаты были точными и проверяемыми. Более того, Гёдель показал, что если в какую-либо арифметическую систему вводятся некие новые идеи, позволяющие сделать G-утверждения доказуемыми, то в новой, расширенной системе вновь возникнут новые, свои собственные G-утверждения!
Кроме того, Гёдель придал концепции «согласованной арифметической системы» точную математическую форму и показал, что ее нельзя строго обосновать, т. е. каждая такая система будет включать в себя некоторые истинные высказывания, которые не могут быть доказаны, и, следовательно, каждая такая система будет неполной.
Гильберт
Один из крупнейших специалистов в теории чисел, Герман Вейль когда-то остроумно заметил, что «…Бог существует, поскольку математика явно непротиворечива, но существует и дьявол, поскольку мы не можем доказать эту непротиворечивость». Гильберт был даже более последовательным и завещал, чтобы на его могильной плите было написано: «Мы должны знать и мы обретем знание».
Открытие Гёделя стало для абстрактной математики столь же волнующим, необычным и притягательным событием, как формулировка Гейзенбергом принципа неопределенности для квантовых частиц. На жизнь обычных людей это открытие не оказывает почти никакого воздействия хотя бы потому, что человек не способен выделять в речи «неопределенные» утверждения, играющие основную роль в построениях Гёделя, так что их использование остается редким и малоосмысленным в обыденной жизни.(В качестве примера можно привести популярное выражение «Нет правил без исключений». Это утверждение, примененное к самому себе, означает, что должно существовать хотя бы одно «исключительное» правило, не допускающее никаких исключений и т. д. – Прим. перев)
Один плюс один всегда равняется двум, независимо от того, как люди осуществляют эту арифметическую операцию (школьник у доски, ученый с компьютером и т. п.). В этом отношении открытие Гёделя может казаться даже просто ненужным или неуместным, так что неудивительно, что даже многие профессиональные математики, искренне восхищаясь интеллектуальной мощью и концептуальной новизной теорем Гёделя, спокойно относят их скорее к философии, чем к чистой математике. Например, в известной книге «Инструменты разума»
Впрочем, последнее утверждение можно считать явным преувеличением с тех пор, как в 1963 г. молодой профессор Станфордского университета Пол Коэн сообщил Гёделю, что он нашел доказательство «вечной неразрешимости» нескольких важных математических проблем, среди которых, кстати, была и одна задача из упоминавшегося выше списка 23 проблем великого Гильберта, умершего еще в 1930 году.