Читаем 10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА полностью

Казалось совершенно невероятным, что электроны можно описывать, пользуясь совершенно разными математическими аппаратами и разными типами уравнений, т. е. рассматривая их то в качестве частиц, то в качестве волн. Объект исследования должен был представлять собой (по крайней мере, в соответствии со здравым смыслом) либо то, либо другое. Читатель может представить себе частицы в виде маленьких, более или менее твердых шариков, способных отталкиваться (или как-то иначе взаимодействовать) друг с другом, что вполне согласуется с понятиями традиционной теоретической физики. В свою очередь, волны могут накладываться друг на друга, проходить друг через друга и усиливаться (или ослабляться) при взаимодействии, создавая более крупные (или, соответственно, мелкие) волны, причем такое поведение тоже прекрасно укладывалось в рамки традиционной физики, хотя и относилось к совершенно иному классу явлений и объектов. Проблема заключалась в том, что эти два описания нельзя было использовать одновременно для одного объекта.

Бурные разногласия в среде теоретиков кончились в 1926 г., когда Макс Борн нашел решение проблемы, которое используется до настоящего времени и сводится к тому, что… никакого ответа на поставленный выше вопрос не существует в принципе! Борн показал, что некорректной является сама постановка задачи о состоянии электрона, поскольку, строго говоря, мы можем говорить лишь о вероятности такого состояния или о возможности его реализации. Волна в уравнении Шрёдингера относится не к физически существующему объекту (типа привычных радиоволн или света), а к некоторому абстрактному понятию, а именно – к вероятности нахождения электрона в заданной точке пространства.

***

Еще дальше в исследовании загадочного поведения квантовых объектов продвинулся Гейзенберг, которому удалось обнаружить в проблеме (волна/частица) совершенно неожиданный поворот мысли и придать этой дуальности новый физический смысл. Рассмотрим подробнее процесс взаимодействия светового кванта (фотона) с веществом и вспомним, что способность видеть основана на регистрации фотонов, излучаемых объектом или отраженных от него (например, ночная тьма наступает после захода Солнца, когда линия горизонта прерывает поток солнечного света). Гейзенберг продемонстрировал, что эта ситуация выглядит иначе при освещении фотоном какой-либо субатомной частицы. Действительно, давайте представим себе крошечный фотон (математики называют такие сверхмалые объекты бесконечно малыми), сталкивающийся с отдельным (таким же бесконечно малым) электроном. Конечно, отраженный фотон приносит нам «информацию» о местоположении электрона, но совершенно ясно, что соударение одновременно изменяет это положение из-за самого процесса столкновения, так что получаемая нами информация является недостоверной и фактически говорит лишь о положении электрона до столкновения, а не в текущий момент времени. Читатель может легко сообразить, что посылка следующего фотона (для уточнения информации) не исправляет положения, поскольку он тоже несколько сместит координату электрона и т. д. Кстати, эта ситуация не является выдуманной, а целиком и полностью соответствует условиям и ограничениям реальных экспериментов с квантовыми объектами. Например, длина волны видимого света слишком велика для точного определения координаты электрона, вследствие чего экспериментаторы для повышения точности вынуждены пользоваться электромагнитным излучением с более короткими волнами (например, рентгеновскими лучами), однако такие кванты несут больше энергии и, естественно, значительно сильнее смещают электроны с исходных позиций.

Таким образом, мы никогда не можем точно определить координаты конкретного электрона, а можем лишь указать его положение в момент измерения и приблизительно вычислить (исходя из массы и других параметров столкновения) вероятность его местоположения в некотором диапазоне в последующие моменты времени.

Гейзенберг получил ставшее знаменитым соотношение, связывающее неопределенности в вычислении координат электрона и его импульса, возникающие при любых попытках одновременного измерения этих параметров. Уравнение было названо принципом неопределенности и получило широкую известность и популярность во многих далеких от физики сферах деятельности (например, в поп-культуре), где этому принципу, разумеется, были даны совершенно произвольные и неожиданные толкования.

Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука